Percutaneous treatment with radiofrequency ablation of varicose veins recurring after vein stripping surgery
A preliminary study

*International Evangelical Hospital, Genoa, Italy,
**Clinical Medicine and Surgery Department, "Federico II" University, Naples, Italy

Percutaneous treatment with radiofrequency ablation of varicose veins recurring after vein stripping surgery. A preliminary study

AIM: The aim of our study was to evaluate the efficacy of a new treatment of recurrent varicose vein after stripping of the great saphenous vein with rigid radiofrequency needles.

MATERIAL OF STUDY: 37 patients enrolled (11 males and 26 females). 10 patients had recurrent varicose veins for the presence of residual reflux in the Saphenous-Femoral Junction (SFJ) stump, whilst 21 patients for the presence of a single or multiple re-chanalized and refluxing perforator veins, and 6 patients had mixed rechanalization due to perforator veins and refluxing saphenous stump.

All patients have been treated by percutaneous ultrasound-guided obliteration with radiofrequency needles. Treatment efficacy have been assessed by US evaluation, and/or the appearance of recurrent varicose veins and classified as REVAS questionnaire. Follow up has been carried out at 30, 60, 180 days and 1 year after treatment.

RESULTS: A complete obliteration of the perforator(s) stump(s) was observed in 12 procedures immediately after the treatment, and confirmed at 30 and 60 days. In 1 case (7.69 %) obliteration was not complete at 60 days. After 1 year of follow-up 3 perforators (23.07%) showed an incomplete or failed obliteration. A complete obliteration of the treated SFJ was observed in 27 cases at the end of the procedure and confirmed after 60 days of follow-up patients (Fig. 4). In 2 cases (6.89%), obliteration was non complete at 60 days. After 1 year of follow up 5 treated SFJ (17.24%) stumps showed an incomplete or a failed obliteration.

DISCUSSION: Results show a reduction of the number of limbs affected by ulcer, skin pigmentation and stasis eczema, demonstrating correction of haemodynamic overload to be effective.

CONCLUSIONS: This treatment is a new and effective solution to the problem of post-stripping recurrent varicose veins.

KEY WORDS: Perforator veins, Radiofrequency, Recurrent post-stripping varicose veins, Saphenofemoral stump

Introduction

Venous disease, including varicose veins, is one of the most commonly reported chronic medical conditions and a substantial source of morbidity in the United States. Estimates of the prevalence vary widely from 12% to 40% in men and 25% to 73% in women. In the United Kingdom, almost 90000 operations are performed per year. Recurrences are common, and vary according to different case histories, up to 70% at 10 years. REVAS study reports that the recurrences are 6,6%-37% at two years, >51% at 5 years. The risk of recurrence is lower when the treatment is performed by specialized vascular surgeons 1-7. Even when performed by expert vascular surgeons, the recurrence after surgery, with open groin access, is usually caused by neovascularization. The endovascular procedures without open groin access can
reduce the development of this complication8,9. The risk of recurrence is lower when varicose veins are treated with sclerotherapy and all endoluminal treatments10. The causes of recurrences are various. The two main causes, about 60\% of all1, are the post-stripping rehabilitation and reflux due to refluent perforator veins11 and residual reflux in the saphenous vein cross-stump. We know that saphenous-femoral junction (SFJ) is like a perforator vein1-3.

Our study focused on this two causes of recurrence which are remarkable from the point of view of therapeutic options. Among the treatment options the most common are surgical revision and sclerotherapy12. A possible thermal solution is represented, in our opinion, by the radiofrequency rigid needle (Fig. 1).

The hemodynamic rational of this treatment is to close, using an endovascular radiofrequency needle, the point of supply of the recurrent varicose veins after stripping. The purpose of this study is to verify the feasibility of this solution in patients previously subjected to surgical procedure presenting varicose vein recurrences mainly due to rechanneled perforator veins and to residual incontinent cross-stump (Fig. 2).

Our technique stems from thyroid and liver nodules treatment with rigid needle and consists in percutaneous vein cannulation which is performed in a perpendicular fashion, for a maximum extension of 2 cm. The most effective advantage is just the perpendicular modality which best fits to the typical direction of perforator veins, granting a better obliteration of the point of supply of a varicose vein recurrence. The effectiveness of this technique is based on a scrupulous and accurate pre-procedural echocolordoppler-assisted mapping of supply points and haemodynamic shunts13.

Materials and Methods

From January 2014 to December 2016, 37 outpatients, for a total of 37 limbs treated (when a patient presented bilaterally a recurrence, only the most symptomatic limb has been treated)25 females (67.56\%) and 12 males (32.44\%), mean age 47.39 ± 7.38 years have been selected on the basis of a clinical examination coupled to an ultrasound evaluation performed at the International Evangelical Hospital, Genoa, Italy. All patients were symptomatic for varicose vein recurrence. A patient/affected limbs stratification according to CEAP C has been carried out. Recurrence types have been analyzed using REVAS questionnaire. Lower limb disease spreaded from CEAP C3-C6 classes (Table IV). Only patients previously subjected to traditional surgery of Great Saphenous Vein (GSV) (only one time before) have been enrolled.

Table I - Topography (due to the contemporary presence of multiple recurrent varices, the total number of limbs is greater than the one of the treated limbs).

<table>
<thead>
<tr>
<th>N. of Limbs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groin</td>
<td>18</td>
</tr>
<tr>
<td>Thigh</td>
<td>15</td>
</tr>
<tr>
<td>Lower leg</td>
<td>6</td>
</tr>
</tbody>
</table>

Table II - Source (since more than one territory may be involved, the total number of limbs is greater of the one of the treated limbs).

<table>
<thead>
<tr>
<th>N. of Limbs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFJ</td>
<td>24</td>
</tr>
<tr>
<td>Pelvic</td>
<td>5</td>
</tr>
<tr>
<td>Thigh</td>
<td>13</td>
</tr>
<tr>
<td>Popliteal Perf.</td>
<td>0</td>
</tr>
<tr>
<td>No-one</td>
<td>0</td>
</tr>
</tbody>
</table>

Table III - Nature of source

<table>
<thead>
<tr>
<th>N. of Limbs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Failure</td>
<td>4</td>
</tr>
<tr>
<td>Tactic Failure</td>
<td>15</td>
</tr>
<tr>
<td>Neovascularization</td>
<td>6</td>
</tr>
<tr>
<td>Uncertain</td>
<td>3</td>
</tr>
<tr>
<td>Mixed</td>
<td>9</td>
</tr>
</tbody>
</table>
The recurrences analysis according to REVAS questionnaire are reported in the Tables I, II and III. Patients were treated by percutaneous ultrasound-guided radiofrequency needle (Fig. 1). All patients signed a written consent to the execution of the treatment, after accurate informations about the purposes of the treatment. The procedure has been authorized by institution ethical committee. After a preoperative ultrasound mapping, the patients were treated. For the study it has been used a radiofrequency monopolar, uncooled, rigid needle coupled to a radiofrequency generator, produced by HS® (Fig. 1). The needles used have a diameter of 16G, a length of 10 cm with the portion of exposed tip of 1 cm.

With the patients placed in supine position, via ultrasound guide, after local anesthesia (2% lidocaine 10 cc + Sodium Bicarbonate 10 mEq/10 ml 2cc), we introduce the needle through the skin without incision, into the vessel lumen, stopping one centimeter before the entrance of the deep circulation. After insertion of the needle inside the lumen of the vessel, we perform the infusion (US guided) of tumescent solution around the SFJ stump or perforator (physiological NaCl 500cc + lidocaine 2% 20 cc + sodium bicarbonate 10mE/10 ml 10 cc) through a 22G needle, with the aim to protect from heat the tissues surrounding the vessel and to reduce the pain for the patient. After this, is possible to start the delivery of radiofrequency, with the aim of collapsing the vessel (Fig. 4). The delivery of the radiofrequency had an average duration of 20 seconds, in most cases limited by the onset of pain, with an average power of 60W. The delivery was controlled by impedance around the tip of the needle, which increased with the tissues warming. The sudden rise of impedance, due to the carbonization of the tissue, imposed the interruption of the delivery. We perform one delivery with the tip of the needle kept in position, one centimeter before entrance of the deep circulation. After this we check the collapsing using color doppler technique. If necessary is possible to perform a second erogation. When the collapse is obtained, the needle is extracted and the treatment is complete.

After procedure patients worn a double layer compression system, which consisted of two stockings: an antithrombotic post-op 18 mmHg stocking to which is overlapped a 1st class 18-21 mmHg compression stockings. Liquid or foam sclerotherapy treatment of residual varices is performed in a second time, in case of an incomplete elimination of haemodynamic overload.

Results

37 limbs had been treated with the above technique. 25 limbs had previously treated with an GSV High Ligation (HL) and above knee stripping; 8 limbs had been treated with GSV HL and under knee stripping; 4 with HL and Muller phlebectomies. All limbs presented post-procedural symptomatic varices.

Complete results are showed in Table I, II, and III. Nineteen treated limbs showed a refluxing SFJ stump,
while 8 showed one or more refluxing perforator vein(s). A refluxing mixed SFJ-Perforator pattern has been found in 5 limbs. A refluxing mixed SFJ-Pelvic pattern has been shown in 5 limbs.

A complete obliteration of the perforator(s) stump(s) was observed in 12 procedures immediately after the treatment, and confirmed at 30 and 60 days. In 1 case (7.69%) obliteration was not complete at 60 days. After 1 year of follow-up 3 perforators (23.07%) showed an incomplete or failed obliteration.

A complete obliteration of the treated SFJ was observed in 27 cases at the end of the procedure and confirmed after 60 days of follow-up patients (Fig. 4). In 2 cases (6.89%), obliteration was non complete at 60 days. After 1 year of follow up 5 treated SFJ (17.24%) stumps showed an incomplete or a failed obliteration.

After 1 year follow-up there was a CEAP down-staging, (see table IV for complete results). In particular we have assisted in a CEAP C6 down-staging, passing from 10.81% to 5.41%, which testifies an effectiveness in terms of limb haemodynamic overload leading to ulcer healing. Moreover, an improvement due to overload reduction has been seen in the reduction of limbs classified in CEAP classes C3 (oedema) from 18.92% to 10.81% and C4a (eritema and haemosyderinic matting) which decreased of 8.1%. There had not been an improvement in C4b class (lipodermatosclerosis).

Discussion

The technique we are presenting stems from our experience in thyroid and liver nodules RF ablation and requires a maximum of 2 cm percutaneous cannulation of the vein, perpendicularly to the skin. This allows a precise obliteration of supply point, reducing or removing the haemodynamic overload which has caused varicose recurrence and/or new varicose vein born. This implies an accurate pre-procedural haemodynamic mapping, searching for supply points at the basis of venous shunts (Fig. 3). Once removed the haemodynamic overload, varicose vein recurrence can be treated with sclerotherapy technique.

Our technique, unlike Muller phlebectomy, presents certain advantages, requiring an outpatient setting, entailing an unique point of infiltration of anaesthetic drug in correspondence of supply point.

Post-op course is very easy and requires few hours of clinical observation. After this, patients can return to their daily occupations. Skin injuries and scars do not occur and it is repeatable.

Rigid needle RF combined with sclerotherapy, differently from the sclerotherapy alone (especially mousse sclerotherapy) is safer and gives the possibility to treat varicose vein and its supply point without any surgical intervention and any risk of deep vein circulation mousse migration.

The working temperature of rigid RF needle is lower than EVLA; moreover, perpendiculal cannulation is safer and gives the possibility to treat varicose vein without any surgical intervention and any risk of deep vein circulation mousse migration. Perforator veins and saphenous stump rigid RF needle ablation is an effective technique in the treatment of recurrent varicose veins after surgery, and it represents an adjunctive choice available to the surgeon, especially for the easiness and the precision in use, due to the vein cannulation technique which happens in a perpendicular fashion, more effective, anatomically speaking, especially for perforator veins, than traditional RF (saphenous stumps can considered perforator veins as well[17-19]). Anyway, further investigations about this technique and a comparison with RF and mousse sclerotherapy in the treatment of REVAS are necessary.

Conclusions

Perforator veins and saphenous stump rigid RF needle ablation is an effective technique in the treatment of recurrent varicose veins after surgery, and it represents an adjunctive choice available to the surgeon, especially for the easiness and the precision in use, due to the vein cannulation technique which happens in a perpendicular fashion, more effective, anatomically speaking, especially for perforator veins, than traditional RF (saphenous stumps can considered perforator veins as well[17-19]). Anyway, further investigations about this technique and a comparison with RF and mousse sclerotherapy in the treatment of REVAS are necessary.

References

