Radioguided localization of occult colonic lesions during open or laparoscopic surgery
An update

University of Pisa, Italy
*Department of Surgery
**Department of Oncology Medicine

Radioguided localization of occult colonic lesions during open or laparoscopic surgery. An update

The applications of radioguided surgery, an approach to oncologic surgery involving a multidisciplinary team, are expanding at a rapid pace. The technique of radioguided occult lesion localization (ROLL) was originally introduced in the mid-90s for applications in breast surgery, and later adapted also to other tumor lesions such as solitary pulmonary nodules (during either open or laparoscopic surgery) and colonic lesions. Concerning the latter, in particular, the technique called radioguided occult colonic lesion identification (ROCLI) consists of identifying, with the aid of intraoperative gamma-probe counts, small lesions that may escape colic intraoperative palpation, after prior tagging of the lesions performed endoscopically through peri- or intra-lesional injection of Technetium-99m-labeled human albumin macroaggregates (99mTc-MAA), a particulate radiopharmaceutical (25-100 μm) that does not migrate from the site of interstitial administration. Since September 2001, ROCLI has been employed in 12 patients, using a collimated gamma-probe measuring 11 mm in external diameter (Scintiprobe MR100 Pol.Hi.Tech.). All patients underwent preoperative colonoscopy in order to inject 0.2 mL of a 99mTc-MAA suspension (10-20 MBq) into the submucosa or intra-perilesionally; such tagging required only a few minutes. Eight of the 12 patients were then submitted to open laparotomy, while laparoscopic access was utilized in the remaining 4 patients. In all 12 patients, localization of the lesion with the ROCLI technique was technically feasible, safe, efficient and highly accurate, enabling quick detection of the lesion during surgery, with a 100% success rate. No complications occurred, and there was no risk of contamination by ionizing radiation.

KEY WORDS: Colon Cancer, Radioguided Surgery, ROCLI

Introduction

The concept of radioguided surgery (whose beginnings date back to nearly 60 years ago, but which has only undergone its true development over the last 20 years) involves the use of a portable probe for intraoperative detection of the radiation emitted by the radioactive decay of isotopes, which identify the “in vivo” site of any lesion targeted for surgical excision. In recent years, radioguided surgery has undergone considerable evolution, especially with regard to the use of radiopharmaceuticals, which have been employed and modified more and more frequently. During the first years of gamma probe use in radioguided surgery, the most frequently adopted radiopharmaceuticals were tagged monoclonal antibodies (generally with radioiodine). More recently, with the advent of radioguided sentinel lymph node (SLN) biopsy and its application in numerous neoplastic pathologies (though especially in mammary carcinoma and cutaneous melanoma), there has been an exponential increase in the use of radio-
pharmaceuticals tagged with 99mTc, the radionuclide currently used in the majority of radioguided surgical procedures. Nevertheless, the future prospects for radioguided surgery with gamma probes also include the use of radiopharmaceuticals such as $[^{18}F]$fluoro-deoxyglucose ($[^{18}F]$FDG) and other radiopharmaceuticals tagged with positron emitting radionuclides.

Beginning with the earliest applications 1-3, the use of the gamma probe in radioguided surgery has broadened enormously and has evolved into what is now considered a discipline that is in all effects an integral part of surgical practice, revolutionizing the diagnostic-therapeutic approach to many neoplastic pathologies, amongst which breast carcinoma 4-19, parathyroid lesions 20-24, melanoma 25,26, and tumors of the colon-rectum.

Radio-immuno-guided surgery (or RIGS) for tumors of the colon-rectum 27 was first introduced in 1984 through the work of Aitken and colleagues 28-29 at Ohio State University. They showed the feasibility in laboratory mice of detecting gamma radiation emitted by polyclonal anti-CEA antibodies tagged with 131I, moreover revealing the gamma probe’s greater sensitivity for small tumors in comparison to imaging with gamma-cameras 28-29. The Aitken team then performed the first clinical application of RIGS in a 59 year-old male patient with rectal carcinoma 29. In this patient, the gamma probe detected significantly greater uptake of the polyclonal 131I-anti-CEA antibodies by the rectal tumor (135 counts/minutes) in comparison to the sigmoid, taken as the normal “background” (111 counts/minutes).

Shortly thereafter, Martin et al. 30-31 reported the results of the first RIGSs in a study on 28 patients with primary (n = 12) and relapsed (n = 16) colorectal tumors. Each patient was administered an intravenous injection of 2.2 mCi (81.4 MBq) 131I-tagged polyclonal anti-CEA antibodies about 48/72 hours before surgery (23 patients also underwent preoperative scintigraphy scans). In all patients, intraoperative detection of the radiation emissions of the tumor and adjacent tissues was achieved via a portable prototype gamma probe and a commercial control unit. The preoperative scintigraphy furnished correct results in 33% and 64% of the patients with primary illness and relapse, respectively. This clinical study was the first to demonstrate the capacity of RIGS technology to furnish immediate information intraoperative for evaluating a tumor of the colon-rectum. The study moreover showed for the first time that probe sensitivity and specificity are considerably greater the smaller the distance is between the detector and the source. Indeed, because of its proximity to the radiation source, the intraoperative gamma probe enables identifying a tumor with higher probability.

In all subsequent clinical studies 125I has been preferred over 131I 31-33, given that the gamma probe is more efficient in detecting the 125I gamma emissions (with an energy of 35 KeV) than the gamma photons emitted by 131I (364 KeV). For this reason, most clinical trials of RIGS methodology for the identification of colorectal tumors specifically employ 125I-tagged monoclonal antibodies.

In 1996 the Radioguided Occult Lesion Localization (ROLL) technique was introduced. This is a new method that entails endoscopic submucosal perilesional injection of 99mTc-MAA and offers the possibility of radical treatment in cases of both primary tumors as well as relapses or metastases, guiding the surgeon in the execution of macroscopically targeted, curative excisions.

The ROLL technique, conceived and developed at the European Institute of Oncology in Milan for the intraoperative localization of non-palpable mammary lesions, involves the injection of a suspension of macroaggregates of human albumin tagged with Technetium-99m (99mTc) in and around the lesion of surgical interest. Through use of the special gamma probe, proper ablation of non-palpable neoplasias has been successfully demonstrated in 99.5% of cases, while moreover avoiding the potential problem of detachment and displacement of the metal marker and enabling extremely precise resection of the tumorous mass. A systematic, detailed literature review has concluded the ROLL technique to be better than traditional wire localization for non-palpable lesions of the breast 4-19.

The use of the ROLL technique for localization of occult colorectal lesions is termed Radioguided Occult Colonic Lesion Identification (ROCLI). Prospective studies are however still necessary to evaluate the effectiveness, in terms of survival, of ROCLI followed by radioguided surgery on such lesions.

Materials and methods

Since September 2001 the ROCLI technique has been used on 12 patients, 8 males and 4 females, using a collimated 11 mm-diameter probe (Scintiprobe MR100 Pol.Hi.Tech.) as the gamma ray detector interfaced with a laptop computer for numerical processing of the radiation signal, and a suspension of human albumin macroaggregates tagged with Technetium-99m (99mTc-MAA) as tracer.

The patients included 3 cases of severe dysplasia and 9 cases of carcinoma, amongst which 6 revealed the presence of synchronous carcinoma, that is, a carcinomatous lesion associated with a second neoplastic mass (in these cases severe dysplasia) found within six months of confirmed diagnosis of the first neoplasia. The topographical distribution of the lesions was as follows: 1 carcinomatous lesion of the right colon, treated with right-side hemicolecotomy; 1 carcinomatous lesion of the transverse and descending colon, treated with resection of the transverse colon and atypical resection of the descending; 5 carcinomatous lesions in the descending colon, treated with left hemicolecotomy; 2 carcinomatous lesions in the descending and sigmoid colon, treated with left hemi-
colectomy associated with anterior resection of the middle-high rectum, and lastly 3 dysplastic lesions of the descending colon treated with left hemicolectomy (Tab. I).

All patients underwent preoperative colonoscopy 24 hours prior to surgery, with the purpose of injecting the radiopharmaceutical into the submucosa within or around the lesion, through a disposable sclerosing syringe. A minimum of two injections were performed for each lesion to administer doses of 0.2 ml of 99mTc-MAA (10-20 MBq). In the event of contemporaneous multiple lesions, the administrations were repeated accordingly.

Immediately after tagging, proper localization was checked through plane scintigraphy with a gamma-camera and/or through external radiation counts with the gamma probe positioned on the cutaneous projection of the injection site.

The time necessary for endoscopy varied between 15 and 30 minutes, including injection of the radiotracer, probe localization of the signal, as well as evacuation of the air present in the colon due to insufflation during the endoscopy procedure. No special position of the patient on the operating table was necessary during the intraoperative stage of radio-guided lesion localization and the gamma probe was used to obtain the intraoperative counts under sterile conditions (during both laparotomy and laparoscopy) (Fig.1).

Laparotomic access was gained through a median suprabranchial incision. Then, after exploration of the abdominal cavity and parenchymatous organs to reveal any metastasis or lymphadenopathy, the Scintiprobe was used to locate the previously tagged lesion.

The next steps were posterior, anterior and lateral detachment of the rectum and mesorectum enveloped in the fascia propria of the rectum, while preserving the nerves of the hypogastric plexus, and consequent resection of the rectum with the linear stapler. Betadine lavage was then performed of the rectal stump, and anastomosis fashioned via transanal access. The integrity of the anastomosis was verified by hydro-pneumatic test, and temporary protective ileostomy performed as necessary, followed by lavage of the abdominal cavity, positioning of drainages, and layer-by-layer closure of the wall.

For laparoscopic access, pneumoperitoneum was induced with a Verres needle or the Hasson open access technique and a trocar positioned supraumbilically; three more trocars were positioned visually: one in the right hypochondrium (10-12 mm), one in the right iliac fossa (10-12 mm) and one in the left iliac fossa (10-12 mm).

Table I - Site of lesion and Treatment

<table>
<thead>
<tr>
<th>N° and site of lesion</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ca right colon</td>
<td>Right hemicolectomy</td>
</tr>
<tr>
<td>1 Ca transverse + descending colon</td>
<td>Resection trans. + atypical resect. of descending colon</td>
</tr>
<tr>
<td>5 Ca descending colon</td>
<td>Left hemicolectomy</td>
</tr>
<tr>
<td>2 Ca descending colon + Ca Sigmoid</td>
<td>Left hemicolectomy + resect. ant. middle-high rectum</td>
</tr>
<tr>
<td>3 Dysplastic lesions of descending colon</td>
<td>Left hemicolectomy</td>
</tr>
</tbody>
</table>

The inferior mesenteric peduncle was isolated, clamped and sectioned near its origin via double ligature with Vicryl 2/0. The proximal colon was sectioned with a linear mechanical stapler and a tobacco pouch fashioned with positioning of the head for the circular stapler.

![Fig. 1: A-B: Patient with colon neoplasm and perilessional injection of tracer via laparoscopy; C: Laparoscopic Scintiprobe with diagram of the uptake.](image-url)
The patient was placed in the Trendelenburg position with rightwards rotation and exploration of the abdominal cavity as per the open technique. The endoscopic probe (Scintiprobe) was inserted and the previously tagged lesion(s) localized, after which the borders oncologically free of infiltration were determined. Mobilization of the left colic flexure was performed through left-to-right sectioning of the gastrocolic ligament beginning in the middle of the transverse colon up to the splenocolic and frenocolic ligaments so as to allow depression of the left colic flexure. The inferior mesenteric vessels were then sectioned followed by the mesocolon, as per the open technique. Mobilization of the left colon and sigmoid was finally completed by sectioning the peritoneal reflection of the left parietocolic groove up to the promontory and then separating the rectum and mesorectum anteriorly and laterally, sparing the nerves, as per the laparotomic technique.

The colon-rectum was then closed and sectioned with a mechanical stapler after endoluminal betadine lavage. A mini-laparotomy was performed in order to extract the colon-rectum and the colon was sectioned proximally to the neoplasia, and the head for the circular stapler introduced. Anastomosis was performed transanally following the Knight-Griffin method. The integrity of the anastomosis was checked via the hydro-pneumatic test and a temporary protective ileostomy fashioned as needed.

During the procedure, the surgeon used the gamma probe to externally scan along the colon axis to search for the injection sites. In all 8 cases treated with the laparotomic surgical approach the time required to localize the lesion was only few minutes (range 2-5 min.), while for the video-laparoscopic approach used instead in 4 cases, the procedure called for slightly longer times (range 3-9 minutes). The lesion (or in the event of multiple lesions, the intestinal segment to be resected) was then delimited with clips, which were used during resection as reference markers to avoid having to reintroduce the gamma probe. After resecting, checks were made with the gamma probe to confirm the absence of residual radioactivity in both the resection borders and the rest of the abdominal cavity. Moreover, localization was effected of the injection sites ex-vivo by measuring the radiation distribution along the resected segment of the colon with the gamma probe (Fig. 2).
Lastly, as the histological samples drawn from the lesions were to be considered biologically hazardous material until decay of the radiotracer, they were only examined a minimum of 24 hours after the surgical procedure.

Results

In all 12 patient treated, localization of the lesion through via ROCLI was technically feasible, safe, effective, and highly accurate, enabling timely, 100% successful identification of the lesion during the surgical procedure. When the distance of the probe from the lesion was maintained within 0.5 cm, the detected radiation counts were very high (8.0-10.0 KCTs), though it fell significantly (to about 4.0 KCts) at about 2 cm from the source, to reach 0.1 KCts a distance varying between 5 and 10 cm. In all 12 cases the presence of the lesions was confirmed by pathology examination of the surgical specimen.

Discussion

The difficulty of detecting small-sized colon lesions or those located in particular areas is well-known to G.I. surgeons. Often polyps, small neoplasias, angiodysplasia and residual neoplastic tissue after incomplete endoscopic ablation are difficult to locate either visually or through palpation. Lesions in the right and left colic flexures, for example, are particularly difficult to identify, especially when they are accompanied by inflammation (peritonitis, diverticulitis). This difficulty in localizing lesions is particularly marked in laparoscopic surgery, during which identification of a lesion or definition of the borders of even large-sized neoformations can be challenging when there is no serious involvement.

Various methods of preoperative localization have been proposed over the years: double-contrast opaque enemas, colonoscopy, tagging techniques with Indian ink or methylene blue and, more recently, tagging with metal clips inserted endoscopically and highlighted intraoperatively through radiological or echographic techniques and the use of a metal detector.

Whether combined with double-contrast enema or not, pre- and intra-operative colonoscopy, which have long been the mostly widely used techniques, do not always enable the distance between the lesion and the anal border to be evaluated accurately. This is due to the relaxation and stretching of the colon that take place during the examination. Planning intraoperative endoscopy during open surgery can be very challenging and at times impracticable, especially in emergency situations. There are inherent difficulties, from positioning the patient, to preparation of a sterile operating field and the necessary surgical timeframe, to which must be added the costs of sterile materials, antibiotic coverage, and the need for an available operating theater and a gastroenterology team with portable instrumentation.

Preoperative endoscopic tagging (with Indian ink or methylene blue) have moreover not been shown to be safe, reproducible and reliable methods in clinical practice. This is mainly due to the instability of the stains and the near impossibility of repeatedly administering precise submucosal injections. The method is quite unreliable, involves the risk of serious complications, and has a high rate of failure due to various factors, amongst which the risks of injecting the stain into the peritoneal cavity, chemical reactions caused by the dye at the injection site, diffusion of the stain in time, the instability of some stains and the intraoperative difficulty of finding the “colored” site in areas of complex anatomy such as the left flexure of the colon. The method is moreover contraindicated in patients with diverticulitis.

Recently, a technique has been proposed that involves tagging with metal clips, which are then detected by radiology or echography. Such technique has however revealed to suffer from some major drawbacks: the clips may be displaced, the radiographs are often difficult to interpret, and radiation shielding is required. Finally, metal detectors are not easily available for laparoscopic applications and moreover require the application of a large number of clips to be effective in situ.

Ecograph detection also presents a number of drawbacks: the colon must be clamped and a saline solution administered rectally in order to guarantee optimal ecograph performance. Lastly, as with the radiograph method, the clips may simply detach or move. For these reasons, ultrasound techniques for the detection of such clip markers can only be used effectively at the level of the sigmoid and rectum.

Radioguided surgery in patients suffering from colon cancer furnishes real-time information to the surgeon regarding the localization and extension of the lesion and enables more precise evaluation of the boundaries for surgical resection. Moreover, such technique has enabled reducing to a minimum the surgical invasiveness of many diagnostic and therapeutic procedures of enormous benefit to oncology patients.

The main advantage of radioguided techniques over other methods is the extremely precise localization they afford of tagged lesions, a process which can moreover be concluded in exceptionally brief times. In addition, they do not call for any extra maneuvers above and beyond those necessitated by surgery, involve lower costs and are faithfully reproducible.

Radioguided localization of occult lesions moreover enables identification of lesions that the surgeon can neither palpate nor see, and limits the area to be resected to the lesion alone, at least in cases where radical resection is not made necessary by clinical or oncological reasons. This technique makes it possible to combine intestinal resection with surgical ablation of a lesion else-
Riassunto

La chirurgia radioguida è una disciplina che presenta numerosi campi di applicazione, soprattutto in ambito oncologico; è caratterizzata dall’approccio multidisciplinare diagnostico-terapeutico tra medico nucleare e chirurgo. Dalla metà degli anni ’90 è stata introdotta la tecnica ROCLI (sigla che indica la “radioguided occult colon lesion identification”) è stata tecnicamente fattibile, sicura, efficace ed altamente accurata, consentendo l’individuazione tempestiva della lesione durante l’intervento chirurgico, con tasso di successo pari al 100%; non si sono inoltre verificate complicanze, e non c’è stato rischio di contaminazione da radiazioni ionizzanti.

References

Radioguided localization of occult colonic lesions during open or laparoscopic surgery. An update

