Inflammatory response in open and laparoscopic cholecystectomy

G. Di Vita, C. Sciumè, S. Milano, R. Patti, G. Lauria Lauria, G. Di Bella, R. Caruso, P. Leo, E. Cillari

Università degli Studi di Palermo
I Divisione di Chirurgia Generale
Direttore: Prof. P.Leo
Dipartimento di Biopatologia e Metodologie Biomediche
Azienda Ospedaliera V. Cervello Laboratorio di Patologia Clinica
Direttore: Prof. E. Cillari

Introduction

Laparoscopic cholecystectomy (LC) has become the gold standard technique over the open procedure for the treatment of the non-neoplastic disease of the gallbladder [1, 2]. Advantages of LC over the traditional open cholecystectomy (OC) are small skin incision, less pain, more rapid post-operative recovery associated with a reduced postoperative morbidity, early return to normal activity [3, 4]. The exact mechanism explaining the benefit of minimally invasive LC is unclear. In the last years, several studies have been published indicating as possible causes of the favourable clinical outcome of LC the reduction of neuroendocrine stress and acute phase response, associated with a better preservation of immune response [5-9]. After OC and LC has been observed a significant increment of interleukin (IL-6) and C-reactive protein (CPR) compared with the basal values [3, 5, 6, 10-18]. In many studies, comparing the two types of operation, a significant increase of IL-6 and CPR has been showed in patients that were underwent to OC [5, 10-13]; others, studies do not point out differences about IL-6 [3, 14-17] and CPR [6, 14, 16]. The data about modifications of other markers of acute phase are few [11,19]. In this study the modifications of IL-6, CPR, ceruloplasmin, alpha 1 antitripsin, fibrinogen, transferrin, albumin and leukocytes counts after OC or LC have been evaluated.

Abstract

The modifications of IL-6, CPR, ceruloplasmin, alpha 1 antitripsin, fibrinogen, transferrin, albumin and leukocytes counts have been evaluated after traditional open cholecystectomy (OC) or laparoscopic cholecystectomy (LC). Forty-two patients were included in this study, 20 underwent to OC and 22 underwent to LC. Serum samples were performed before surgery and at distance of 6, 24, 48 and 168 hours. The results show a more significant increase in acute phase inflammatory response after OC compared with LC as attested by highest values of leukocytosis, IL-6, CPR, fibrinogen and alpha 1 antitripsin and lower levels of albumin. In conclusion, after LC, the phase acute response is attenuated and it can explain the reduced period of convalescence of patients treated with LC.

Key words: IL-6 and acute phase proteins in cholecystectomy.

Riassunto

LA RISPOSTA INFIAMMATORIA NEI PAZIENTI SOTTOPOSTI A COLECISTECTOMIA LAPAROTOMICA E LAPAROSCOPICA

Sono state valutate, dopo colecistectomia laparotomica (OC) e laparoscopica (LC) le modificazioni dei seguenti parametri: interleuchina (IL-6), proteina e reattiva (CPR), cerulo-plasmina, alfa 1 antitripsina, fibrinogeno, transferrina, albumina e conta leucocitaria. Lo studio è stato condotto su 42 pazienti, 20 sottoposti ad OC e 22 ad LC. I campioni ematici sono stati eseguiti prima dell’intervento ed a distanza di 6, 24, 48 e 168 ore. I risultati mostrano un significativo incremento della risposta di fase acuta nei pazienti sottoposti ad OC rispetto a quelli LC come dimostrano gli alti valori di leucociti, IL-6, CPR, fibrinogeno, alfa 1 antitripsina, ed i bassi livelli di albumina. L’attenuata risposta di fase acuta dopo LC può spiegare il ridotto periodo di convalescenza dei pazienti trattati con tale metodica.

Parole chiave: IL-6, proteine di fase acuta, colecistectomia.
Materials and methods

Patients

Forty-two patients (age range 25-60 years) with symptomatic gallstone disease were included in this study. All of them were without gallbladder complications (acute cholecystitis, cholelithiasis), metabolic, endocrine, hepatic or renal diseases. Furthermore, nobody assumed steroid, neither nonsteroid anti-inflammatory drugs, or received any transfusion. One group of patients was under the care of a surgeon of the team of the first Division of Surgery Department from University who routinely carried out LC (n = 22) and the other under the care of a surgeon of the second Division of the same Surgery Department who performed OC (n = 20). Patients gave written informed consent and the local ethics committee approved the study. Preoperatively, all patients received enoxaparin sodium (20 mg) and antibiotic prophylaxis (lg of intramuscular cefuroxime). Both study groups received the standard anaesthetic procedures using thiopental sodium for induction, vecuronium for neuromuscular blockade, isoflurane and fentanyl citrate for analgesia. OC were carried out through an 8 cm subcostal incision. LC by the four trocars techniques [20] using a CO₂ pneumoperitoneum maintained at 12-14 mmHg. Patients were classified as either grade I, II or III according to American Society of Anaesthesiologists (ASA) grading system [21]. Age, gender, anesthesiologic grading, duration of operation and body weight index are given in Table I. LC patients left the hospital 2-3 days after the operation, whereas OC patients 4-5 days after surgery. Peripheral venous bloods samples were collected 24 hours prior to surgery and than 6, 24, 48 and 168 hours postoperatively.

Cell counts

Blood counts were performed by using an ADVIA 120 (Bayer Diagnostic, Munich, Germany) which performed absolute numbers and percentages of leukocyte count.

Table 1 – PATIENTS CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>OC</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47 ± 15</td>
<td>52 ± 25</td>
</tr>
<tr>
<td>Gender (f/m)</td>
<td>14/6</td>
<td>18/4</td>
</tr>
<tr>
<td>Body mass index (Kg/m²)</td>
<td>26 ± 5</td>
<td>24 ± 7</td>
</tr>
<tr>
<td>Anesthesiologic Grading (ASA)</td>
<td>I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>6</td>
</tr>
<tr>
<td>Duration of operation (min)</td>
<td>62 ± 28</td>
<td>66 ± 30</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard deviation P > 0.05 all parameters.

Samples and Assay

Samples were from blood within 30 min of venipuncture by clotting and centrifugation at 400g for 10 min at rt. Samples were aliquoted and frozen at -70°C until assayed. For IL-6 determination available ELISA Kits were used (Euro Clone, Ltd, UK). The principle of the assays was sandwich enzyme immunoassay which utilises monoclonal antibody (MoAb) immobilised on a solid phase to capture antigen from the test specimen, and a peroxidase - conjugated monoclonal added to bind the antigens captured by the first antibody, as previously used [22]. CRP, transferrin, alpha 1- antitrypsin and ceruloplasmin plasma levels were determined by nephelometric analysis. Commercially available Kits were purchased from Behring, Vienna, Austria. Fibrinogen was determined using the method of Clauss and Kits from Behring, Vienna, Austria. Albumin was determined using biochemical analyser.

Statistical analysis

Standard deviation (SD) and standard error (SE) were calculated and statistical significance analysed by Student’s t-test. Variance analysis was determined by ANOVA. Spearman rank correlation test was used to correlate different variables. Differences between two groups of patients were calculated by the Mann Whitney U test. The Wilcoxon signed rank test was used to evaluate paired data. P<0.05 was considered statistically significant.

Result

Age, gender, anesthesiologic grading, duration of operation and body weight index were no significant difference between the two groups (Tab. I) All patients showed an uncomplicated intra and post-operative course.

Interleukin-6

IL-6 levels were significantly increased in both groups compared their baseline levels (Tab. II). In patients who underwent OC, IL-6 began to significantly increase immediately after the operation with a peak 6 hours after operation. Its level remained significantly high (P<0.01) 48 hours after surgery, declining to the preoperative level 7 days afterwards. Also in the LC group patients IL-6 levels were significantly increased overtime compared with the baseline level, but it was significantly (P<0.01) lower than that in the OC group. Furthermore, in LC patients, after the IL-6 peak at hour 6, a marked decrease was observed by day 1.
Table II – EVALUATION OF IL-6 MODIFICATIONS AFTER OPEN CHOLECYSTECTOMY (OC) OR LAPAROSCOPIC CHOLECYSTECTOMY (LC).

<table>
<thead>
<tr>
<th>Time</th>
<th>OC</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preop.</td>
<td>5.3 ± 2.3</td>
<td>2.3 ± 0.6</td>
</tr>
<tr>
<td>+6h</td>
<td>39.1 ± 5.1**</td>
<td>14.6 ± 2.5**</td>
</tr>
<tr>
<td>+24h</td>
<td>37.2 ± 4.5**</td>
<td>8.7 ± 2.9*</td>
</tr>
<tr>
<td>+48h</td>
<td>31.5 ± 5**</td>
<td>8.5 ± 2.5*</td>
</tr>
<tr>
<td>+168h</td>
<td>4.2 ± 2.2</td>
<td>3.5 ± 2.1</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard deviation. Serum levels in health control group (pg/ml) 0.8±0.9. Significance versus preoperative value *P<0.05; **P<0.01.

Leukocytes

The analysis of leukocyte counts in OC and LC groups are shown in Fig. 1a. As indicated cholecystectomy determined a significant leukocytosis 6-h, 1 and 2 days postoperatively in both groups. This increase was significantly higher in OC than in LC patients. OC was associated with a significant increase in the percentage and in the absolute number of neutrophils, with the contemporary reduction in lymphocytes (data not show). LC patients showed a significant (P<0.01) leukocytosis. Furthermore, LC subjects had a significant increase (P<0.01) in the absolute number of lymphocytes, even though their percentage values were not modified. (data not show). Monocytes were not significantly altered in both groups.

C-reactive protein

CRP levels were significantly increased in both groups compared their baseline levels (Fig. 1b). In patients who underwent OC, CRP began to significantly increase immediately after the operation with a peak between 24 and 48h, declining to the preoperative level 7 days afterwards. Also in the LC group patients CRP levels were significantly increased overtime compared with the baseline level (P<0.05), but they were significantly (P<0.05) lower than those observed in the OC group 24-48h after surgery.

Transferrin and ceruloplasmin

For both groups all values of transferrin and ceruloplasmin were within normal range and failed to show any changes postoperatively (data not shown). There was no difference when preoperative values were compared to post operative data.

Alpha 1 antitrypsin

Alpha 1 antitrypsin levels were significantly increased in both groups compared their baseline values at 6h and 24 h. In LC the values were normal at 48 h, while in OC were significantly increased also at 48 h (Fig. 1d).

Fibrinogen

The circulating levels of fibrinogen resulted increased in post-operative phase in both groups, but a significant difference was noted only at 24 h and 48 h. At 168 h fibrinogen’s levels were in normal range (Fig. 1e).

Discussion

The surgical operation is followed by activation of defence responses. These begin in the wound site with activation of leukocytes, fibroblasts and endothelial cells and they are cha-

racterised by leukocytosis and synthesis at hepatic level of specific proteins called acute phase proteins [23]; their concentration is proportional to surgical damage [24-26]. There is clinical evidence that the surgical insult, experienced by patients who underwent LC, differs significantly from that experienced by those undergoing OC, since LC is accompanied by less pain, better ventilatory function and almost total absence of secondary paralytic ileum (3, 4). Some of the benefits of minimal invasive surgery seem to be due to lower inflammatory response. Our study shows a more significant increase in acute phase inflammatory response after OC compared with LC as attested by highest values of leukocytosis, IL-6, CPR, fibrinogen, alpha 1 antitrypsin, and the lower levels of albumin. In our patients an immediate and relevant secretion of IL-6 was observed in the blood, according to previous report [3, 5, 6, 10-18]. One important function of IL-6 is to stimulate the production of acute phase proteins [27, 28] activating the complex inflammatory response. The high serum levels of IL-6 could be due to synthesis at the site of incision by infiltrating T cells [28-30]. Our observation of reduction of circulating lymphocytes, as well as the already described reduction of CD4+T cells [9] is consistent with this hypothesis. Other important sources of IL-6 could be the damaged endothelium and fibroblasts [28-30]. Since there is convincing evidence those neutrophils can release IL-6 [31, 32], the very high number of neutrophils could have a relevant role in causing high levels of IL-6. The high levels of IL-6 could be responsible of the increase in the blood of fibrinogen and CRP, as acute-phase proteins produced by the liver [33, 34]. Although recently it has been shown that monocytes are capable of inducing alpha 1 antitrypsin synthesis when stimulated by IL-6 [35] the liver seems to be the main site production in the immediate post-operative period [36]. The reduction of albumin's concentration was observed only in OC patients may be correct as consequence of a more generalised increase in microvascular permeability caused by circulating vasoactive inflammatory mediators [37, 38].

The reduced acute inflammatory response that was observed in patients underwent to LC can be due to the minimum tissue damage produced using this technique, probably due to the limited size of the laparotomy wound [19], or to the lesser intrabdominal tissue damage secondary to intraoperative manipulation [39], or to desiccation of exposed tissue [13], or to the lesser damage mesothelial peritoneal cells [40].

In conclusion after LC the phase acute response is attenuated and it can explain the reduced period of convalescence of patients treated with this surgical procedure.

References
16) Reich H.B., Kaman S., Mittelkotter O., Kilic Y., Kozuschek W.: Cytokine activation in patients undergoing open or laparoscopic...
Inflammatory response in open and laparoscopic cholecystectomy

This paper is very interesting and it represents another significant contribution to the comprehension of the different quality of life in patient undergone laparoscopy versus open cholecistectomy. The scientific value of the paper is remarkable and it clearly shows that the immunological system is not significant impaired by the laparoscopic surgery. On the contrary open surgery also in an easy operation, as cholecistectomy, induces significant change of the immunological parameters.

Autori corrispondenti:
Prof. Enrico CILLARI
Azienda Ospedaliera V. Cervello
Via Trabucco, 180
90146 PALERMO
Tel.: 091-6374973
Fax: 091-6885343
e-mail: enrico.cillari@iol.it

Prof. Gaetano DI VITA
Via Autonomia Siciliana, 70
90143 PALERMO
Tel.: 091-3629619
Fax: 091-6552771
e-mail: gaediv@tin.it
Inflammatory response in open and laparoscopic cholecystectomy